The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 4X 1 1 1 3X 1 1 1 1 1 1 1 1 2X 1 1 1 1 3X 1 1 1 1 1 1 1 1 1 1 1 1 0 X 3X 1 4X 1 1 1 X 1 4X 1 1 1 1 1 2X 0 1 1 1 1 1 1 1 1 2X 1 1 2X 1 1 1 1 1 1 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 4X+1 3X+4 2 2X+4 X+3 3 1 X+4 4X+2 1 X+3 4X+3 0 1 4 2 2X+2 1 4X+1 4X+4 4X 2X+4 1 3X+2 4X+4 3X+4 3X 1 X 4X+3 X+2 X 3X+3 4 3X+2 2X+3 X+2 2X+2 2X 3X 1 1 1 1 1 2X X+4 2X+2 1 4X+3 1 3X+1 3 X+3 3X+3 2X+2 1 3X X+1 0 X+2 2X+1 3X+4 3X 3X+3 X 1 2 3 3X 4X+2 1 4X+4 0 X+2 X+1 X+4 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X X+2 2X+2 3X X+1 4X+3 2 1 0 1 2X X+2 2X+3 X+3 X+4 2X+3 X+1 2X+4 1 4X+3 3X 2X+2 3X+4 X 2X+4 3X+1 4 2X X+2 3X 4X+1 X+3 3X+3 4X+3 4X+4 4X+1 2X+3 3X+2 2X+1 2 2X+3 3X+4 3X 2X+1 2X+2 X 3X X+3 4 4X+4 3X+2 2X+2 3X+4 3X+2 X+1 2X+1 4X+1 1 2 2X+4 3X+2 4 1 2X+3 4X+1 4X+2 4X+4 3X+4 4 1 4X+1 3X+2 2X 4X+4 X+3 X+1 4X+2 generates a code of length 88 over Z5[X]/(X^2) who´s minimum homogenous weight is 341. Homogenous weight enumerator: w(x)=1x^0+1100x^341+500x^342+260x^343+1160x^344+52x^345+1900x^346+880x^347+280x^348+1120x^349+1760x^351+560x^352+140x^353+720x^354+28x^355+980x^356+460x^357+140x^358+400x^359+8x^360+860x^361+380x^362+80x^363+360x^364+24x^365+700x^366+220x^367+100x^368+240x^369+8x^370+200x^371+4x^380 The gray image is a linear code over GF(5) with n=440, k=6 and d=341. This code was found by Heurico 1.16 in 38 seconds.